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ABSTRACT

Hyperparameter optimization (HPO), aiming at automatically search-

ing optimal hyperparameter configurations, has attracted increas-

ing attention in the machine learning community. HPO generally

suffers from high searching costs when dealing with large-scale

real-world datasets since training the model with a certain hyperpa-

rameter configuration is time-consuming. Existing works suggest

sampling subsets uniformly to represent the full dataset for HPO

but ignoring the complex and dynamic distribution in real-world

scenarios and the exploration of hyperparameter transfer. To tackle

this problem, we propose a novel meta hyperparameter optimiza-

tion model with an adversarial proxy subsets sampling strategy

(Meta-HPO), which can transfer hyperparameters optimized on

the sampled proxy subsets to the full dataset and further adapt to

the new data in an out-of-sample updating manner. In particular,

a perturbation-aware adversarial sampling strategy is designed

to select the proxy subsets that significantly influence the model

performance. With the searched hyperparameter configurations

and corresponding performance scores on the proxy subsets, we

propose a meta transfer framework, named “hp-learner”, to build

the connection between the distribution of dataset and the optimal

hyperparameter configuration. Our Meta-HPO provides a flexible

and efficient hyperparameter optimization algorithm. Extensive

experiments on real-world datasets validate the advantages of our

proposed Meta-HPO model against existing state-of-the-art bench-

marks.
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1 INTRODUCTION

Machine learning has achieved considerable success in various ap-

plications such as computer vision, natural language processing and

data mining. The performance of a machine learning model largely

depends on the pre-defined hyperparameters, such as the number

of neurons in each layer, the initial learning rate and the choice of

operators in the deep neural networks (DNNs). Automated Machine

learning (AutoML) provides new ways of automatically discover-

ing the well-performed DNN architectures and hyperparameter

configurations instead of manual designs [9, 11, 28, 29]. As such,

hyperparameter optimization (HPO), aiming to find the optimal

hyperparameters through learning a black-box function mapping

from hyperparameters to their corresponding performances, has

attracted an increasing amount of research interest recently.

In practice, training machine learning models on large-scale in-

dustrial data with a given hyperparameter configuration is quite

time-consuming, thus limiting the possibilities of searching differ-

ent sets of hyperparameter configurations on the original large

dataset. One natural way to reduce the learning cost is sampling

subsets from the original dataset and searching for the best hyper-

parameter configuration for each subset before transferring them

to the original dataset. Klein et al. [16] suggest sampling subsets

randomly from the full dataset and optimizing the hyperparameters

as well as the size of sampled subsets jointly at each iteration. Be-

sides, existing works on hyperparameter transfer across multi-tasks

use Gaussian Process to represent relationships between multiple

datasets implicitly [25–27, 33], or uses DNNs to obtain good model

initialization on the target dataset by taking historical trials learned

from previous datasets into account [30].

However, these existing works suffer from the following weak-

nesses, which are challenging to address.
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• The subsets are sampled uniformly, ignoring the fact that cor-

rectly selecting data points important for model training can

help to search the optimal hyperparameter configurations on

the subsets and in turn benefit the optimal hyperparameter

discovering on the original dataset.

• The hyperparameter transfer through Gaussian Process suf-

fers from high computational complexity (cubic) when fitting

Gaussian Process, while hyperparameter transfer through

neural networks fails to take the meta-information of each

subset into consideration when conducting the transfer.

• They do not consider the fact that data distributions in real-

world applications tend to be complex and dynamic, such

that the optimal hyperparameters do not always remain the

same due to the concept drift issue in newly-coming data.

To tackle these challenges, we propose a meta hyperparame-

ter optimization model with adversarial proxy subsets sampling

strategy (Meta-HPO), which is able to transfer hyperparameters

optimized on the sampled proxy subsets to the full original dataset

and further adapt to new data in an out-of-sample updating manner.

Our proposed Meta-HPOmodel aims to select an appropriate group

of data points important for learning well-performed hyperparame-

ters as the proxy subsets. The training on the proxy subsets speeds

up the hyperparameter selection compared with the training on

the whole dataset. Specifically, we design a perturbation-aware

adversarial sampling strategy to sample proxy subsets with large

impacts on the estimated model performance. The adversarial sam-

pling strategy tends to sample data points around the classification

boundary such that the sampled subsets discriminatively repre-

sent the full dataset. Practically, the proposed sampling strategy

significantly improves the quality of subsets by combining the ad-

versarial sampling strategy with random sampling to construct

more representative subsets of the full dataset.

With sampled proxy subsets, our Meta-HPO model searches

for different hyperparameter configurations on each subset and

then transfers these hyperparameters to the full large-scale dataset

through a meta-learning-based transfer framework, named “hp-

learner”. Concretely, we learn a non-linear function capable of

mapping the meta features together with the given hyperparame-

ters to the corresponding model performance. Moreover, the meta

transfer module facilitates a better hyperparameter selection for

out-of-sample data since we can obtain the meta features for newly-

arriving data and then forecast a well-performed hyperparameter

configuration by the hp-learner.

In the training of the hp-learner, the size of training samples

is limited due to the cost of obtaining a large number of hyperpa-

rameters on the proxy subsets. To avoid over-fitting to the selected

hyperparameters, we apply gradient-based meta-learning paradigm

to the training of hp-learner, motivated by the model-agnostic meta-

learning (MAML) algorithm [8]. Once the hp-learner is trained, it

is able to predict well-performed hyperparameter configurations

on the full dataset. Furthermore, the meta transfer module can also

adapt to out-of-sample scenarios with streaming data by forecast-

ing hyperparameter configuration with the extracted meta feature

from newly-arriving data.

The contributions of this work can be summarized as follows:

• We propose Meta-HPO, a novel meta hyperparameter op-

timization method that transfers hyperparameters learned

from proxy subsets towards the full dataset and new out-of-

sample data to accelerate the HPO process in the real-world

scenarios.

• We design a perturbation-aware adversarial sampling strat-

egy to select proxy subsets whose data points have signifi-

cant impacts on the model performance, thus improving the

efficacy of subsets and enhancing the transfer of hyperpa-

rameters.

• We propose a meta-learning-based transfer mechanism to

build the connection between the distribution of dataset and

the selection of hyperparameter configuration. The meta

transfer module, hp-learner, can predict well-performed hy-

perparameters on the full dataset and additionally deal with

new data in an out-of-sample manner.

• We conduct extensive experiments on various real-world

datasets and compare Meta-HPO with several benchmarks

to validate the effectiveness of our proposed method.

The remaining part of this paper is organized as follows. In

Section 2, we review related work on multi-fidelity hyperparam-

eter optimization and multi-task hyperparameter transfer. In Sec-

tion 3, we introduce the proposed Meta-HPO in detail, including the

perturbation-aware adversarial sampling strategy and the hyperpa-

rameter transfer module. In Section 4, we demonstrate extensive

experimental results on various datasets and compare our model

with existing methods to validate its effectiveness.

2 RELATEDWORK

Our work is closely related to multi-fidelity hyperparameter opti-

mization and multi-task hyperparameter transfer.

2.1 Multi-fidelity Hyperparameter
Optimization

Bayesian Optimization (BO) is proved to be an effective way for

hyperparameter optimization, which estimates the posterior distri-

bution of the model performance 𝑓 to select the next configuration
by exploring with a few configurations 𝜃 and their correspond-

ing model performances 𝑓 (𝜃 ). Here 𝑓 is a black-box function to

be estimated. Some BO-based methods [1, 14, 22] have become

prevalent state-of-the-art solutions. To optimize the hyperparam-

eters on large-scale datasets, the training on the full dataset is

time-consuming, especially in real-world applications. Therefore,

multi-fidelity hyperparameter optimization has been studied in sev-

eral works to speed up the procedure of HPO. From the perspective

of sampling subsets, the work [16] proposes to model the joint space

of the hyperparameters and subset size under different fidelities

𝑠 , where 𝑠 is the size of the sampled subset. From the perspective

of limiting training budget, another work [6] allocates the com-

putational resources dynamically through random sampling and

eliminates under-performing hyperparameters by successive halv-

ing. However, the above attempts to construct subsets by random

sampling method suffer from several limitations. Random samples

inevitably contain numerous points with low information or even

outliers, thus reducing the robustness of the model. In contrast,

we design an effective perturbation-aware adversarial sampling
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Figure 1: The framework of our Meta-HPO model includes three stages. The Meta-HPO first samples a number of proxy sub-

sets from the full dataset with our proposed perturbation-aware adversarial sampling strategy and then optimizes hyperpa-

rameters on the proxy subsets. These two stages are run alternately. In the meta transfer stage, the hp-learner predicts the

corresponding performance, such as the accuracy on the validation set, given a group of the hyperparameters “HPs” and the

ground truth “Acc@Val” on multiple subsets. Best view in color.

strategy for large-scale datasets with complex and even dynamic

distribution. The adversarial sampling strategy finds samples that

play decisive roles in the predicted results of the classifier to achieve

more effective down-sampling compared with random sampling.

In addition, these multi-fidelity hyperparameter optimization ap-

proaches [6, 16] cannot transfer the optimal hyperparameters on

the existing dataset to new batches of data since they cannot adapt

to unseen distribution, whereas our Meta-HPO has the ability to

predict well-performed hyperparameters in an online manner.

2.2 Multi-task Hyperparameter Transfer

Recently, multi-task HPO has attracted attention from the machine

learning community. Several works have studied hyperparameter

transfer within multiple datasets. Studies in [25, 26, 33] use Gauss-

ian Process to represent the implicit relationship across multiple

datasets. The transfer process is learned within the kernel matrix.

However, the fitting of the Gaussian Process is time-consuming,

and the complexity is cubic in the number of datasets. Another

study on hyperparameter transfer learning is Gaussian Process

ensembles [7, 31]. They develop weighted strategies to combine

with previous models to initialize hyperparameters for the new

dataset. Meta-learning-based methods are also studied in transfer-

able HPO. Earlier literature [19, 32] use hand-crafted features as

meta features to initialize the new model. Recently, the work in [20]

conducts Gaussian Process, fitting with a feature map learned by

neural networks. Another work [30] uses neural networks to in-

corporate trials on other datasets and initialize the model, which

applies a metric-based attentionmechanism to leverage previous ob-

servations and the transferring parameters. However, it ignores the

meta-information of different datasets. The training of the neural

networks requires a certain amount of data points to avoid over-

fitting on the previous trials. In this paper, we propose a meta trans-

fer framework to build the connection among meta features of the

proxy subsets, hyperparameters and corresponding performance

and adopt a gradient-based meta-learning paradigm to ameliorate

the over-fitting problem.

3 MODEL

Meta-HPO consists of three stages, as shown in Figure 1: the first

stage is the adversarial proxy subsets sampling strategy to sample

representative subsets from the large-scale dataset as introduced

in Sec 3.2; the second stage is optimizing hyperparameters on the
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Figure 2: The illustration of the perturbation-aware adver-

sarial sampling strategy in proxy subsets sampling.

proxy subsets; the last stage is meta transfer of hyperparameters

with a meta-learning-based transfer mechanism described in Sec 3.3.

We first formulate the hyperparameter optimization problem in

Sec 3.1 and then introduce our model in detail.

3.1 Problem Formulation

Let 𝜃 = (𝜃1, 𝜃2, ..., 𝜃𝑛) be the hyperparameters of the machine learn-
ing model sampled in the configuration domains Θ1,Θ2, ...,Θ𝑛 , re-

spectively, which can be numerical or categorical within finite

domain. The hyperparameter space is then defined as Θ = Θ1 ×

Θ2 × ...×Θ𝑛 . Receiving the datasetD = {D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 }, we should

search in Θ for an optimum configuration 𝜃 according to the per-

formance of the model, which is trained on the train set D𝑡𝑟𝑎𝑖𝑛

and tested on the validation set D𝑣𝑎𝑙𝑖𝑑 . Here we take the test error

on validation set as the performance of learning model and set the

objective as minimizing the test error. Actually, it is the same case if

we maximize a metric (i.e. AUC score) of model performance. The

hyperparameter optimization problem for a given dataset D is to

minimize 𝑓 (𝜃,D):

min
𝜃 ∈Θ

𝑓 (𝜃,D) = L𝑣𝑎𝑙 (𝜃,D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑 ), (1)

where L𝑣𝑎𝑙 (𝜃,D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑 ) is the validation error on D𝑣𝑎𝑙𝑖𝑑 .

Since the objective function 𝑓 (𝜃,D) is not differentiable w.r.t

𝜃 , we can only acquire a number of inputs 𝜃 and their responding

outputs. For large-scale dataset, the procedure of acquiring a group

of 𝜃 and 𝑓 (𝜃,D) is time-consuming. To reduce the time cost of hy-

perparameter optimization, we sample a number of proxy subsets

{D𝑖 }
𝑁
𝑖=1 with 𝑁 as the number of subsets and acquire a group of hy-

perparameter configurations and their corresponding performances

{𝜃𝑖𝑘 , 𝑓 (𝜃𝑖𝑘 ,D𝑖 )}
𝐾
𝑘=1 for each subset D𝑖 , where 𝐾 is the number of

configurations. The optimization objective is then defined as pre-

dicting an optimum point 𝜃 for the full dataset or newly arrived

data with previous obtained hyperparameter configurations on sev-

eral subsets {𝜃𝑖𝑘 , 𝑓 (𝜃𝑖𝑘 ,D𝑖 )}
𝐾
𝑘=1. We should learn the relationship

between the distribution of dataset, hyperparameter configuration

and its corresponding performance with a meta-learning-based

transfer mechanism and then obtain a well-performed hyperparam-

eter configuration on a specific dataset.

3.2 Adversarial Proxy Subsets Sampling

Training a model on a large-scale dataset is prohibitively time-

consuming for HPO. We improve the efficiency of HPO by opti-

mizing hyperparameters on sampled proxy subsets instead of the

full dataset. However, randomly selected subsets are often unrep-

resentative. Thus how to build the proxy subsets is the key to the

problem. Inspired by [3], we introduce adversarial attack into proxy

subsets sampling to measure the importance of points in the full

dataset. Generally, data samples that influence the predicted re-

sults of a model are distributed near the decision boundary [34].

Thus we take the difficulty of distinguishing samples from different

categories as the metric of the importance of samples and select

samples that play decisive roles in the learning model.

Since samples with significant influence on the model are gen-

erally distributed around the decision boundary, adding a small

perturbation to them can result in misclassification of the model.

Therefore, the perturbation added to a sample that results in mis-

classification is a criterion for the importance of points near the

decision boundary. We propose a perturbation-aware adversarial

sampling strategy for proxy subsets sampling. The sampling process

is illustrated in Figure 2. In this process, we iteratively add pertur-

bation to a sample, ensuring the perturbation is the minimum value

that results in misclassification of the data sample. These misclas-

sified samples are called adversarial samples. Finally, we estimate

the distance of each sample to the decision boundary and select the

samples with closer distances to the decision boundary.

Formally, we define such an optimization objective as finding the

minimum perturbation 𝜖 added to the sample 𝑥 so that C(𝑥 + 𝜖) ≠
C(𝑥) and 𝑥 + 𝜖 is within the same range of the original 𝑥 . Here C is

the classification result of the classifier. We constrain the range of

perturbation value 𝑥 +𝜖 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ]
𝑑 , where 𝑑 is the dimension

of the original sample 𝑥 . Formally, the optimization objective is:

min
𝜖

‖𝜖 ‖22,

𝑠 .𝑡 . C(𝑥) ≠ C(𝑥 + 𝜖) .
(2)

Here, the optimization constrain C(𝑥) ≠ C(𝑥+𝜖) can be formulated
as a criteria of the classification results before and after attack:

𝑔(𝑥, 𝜖) = max(max
𝑖≠𝑡

𝑍 (𝑥 + 𝜖)𝑖 − 𝑍 (𝑥 + 𝜖)𝑡 ,−𝑐), (3)

where 𝑍 (𝑥 +𝜖)𝑖 is the probability that 𝑥 +𝜖 is classified to 𝑖-th class,
𝑡 is the target class of the adversarial attack and 𝑐 is a constant
that controls the strength of attack. As for regression task, we

set a positive threshold 𝜎 to measure the difference between the

predicted values before and after attack. The constrain function in

a regression task is:

𝑔(𝑥, 𝜖) = max(𝜎 − |𝑍 (𝑥 + 𝜖) − 𝑍 (𝑥) |,−𝑐), (4)

where 𝑍 (𝑥) is the predicted value of the regression model and 𝑐 is
a constant to control the strength of attack.

Considering the different importance of various dimensions in

the features of a sample, we further use a trainable matrix𝑊 ∈ R𝑑

to learn different weights of the perturbations for each dimension.

The final optimization function is as follows:

min
𝜖

𝜆1‖𝑊 · 𝜖 ‖22 + 𝜆2 · 𝑔(𝑥, 𝜖), (5)
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Figure 3: The architecture of our proposed “hp-learner”. It

consists of a meta feature encoder to extract meta feature

from a given subset, an hps encoder to project hyperparam-

eters to the latent space and anMLP predictor to predict cor-

responding accuracy of given hyperparameters.

where 𝜆1 and 𝜆2 are positive factors that balance the perturbation
and the constrain function 𝑔(𝑥, 𝜖) of the attack. We use Frank-

Wolfe algorithm proposed by [21] to explore the values of (𝜆1, 𝜆2)
to determine the control factors, thus reduce the time consumption

for parameter searching significantly compared with traditional

binary search strategy.

Through the perturbation-aware adversarial attack sampling,

we obtain proxy subsets containing samples that play significant

roles in the model as good abstractions for the full set. After ad-

versarial sampling, the successfully sampled points often account

for a small part of the total set. We further balance the representa-

tiveness and the diversity of the proxy subsets by supplementing

the proxy subsets by randomly selecting additional samples from

the unsuccessfully sampled points. In this way, the distribution of

the full dataset is well represented by the proxy subsets. In brief,

we improve the effectiveness of the sampling module by the pro-

posed perturbation-aware adversarial sampling strategy instead of

random sampling.

3.3 Meta Transfer of Hyperparameters

The key idea of the proposed Meta-HPO is to optimize hyperparam-

eters on the proxy subsets and then transfer the well-performed

hyperparameter configurations to the full dataset and newly arrived

datasets. Given a group of selected proxy subsets, we conduct hyper-

parameter optimization parallelly on the subsets using BOHB [5]

to obtain hyperparameter configurations and corresponding per-

formance {𝜃𝑖𝑘 , 𝑓 (𝜃𝑖𝑘 ,D𝑖 )}
𝐾
𝑘=1 for each subset D𝑖 . Then the well-

performed hyperparameter configurations are recorded as training

examples for our meta-learning-based transfer module, named hp-

learner. After training, the hp-learner could predict well-performed

hyperparameters with given meta features of the new datasets as

inputs.

Meta features extraction

For different proxy subsets, the well-performed hyperparameter

configurations are different. The meta feature ofD𝑖 is defined as𝑀𝑖 ,

which is extracted from the trained neural networks and reflects

Algorithm 1 Training of the hp-learner

Require: Parameter 𝜙𝑚
training samples {𝑀𝑖 , 𝜃𝑖𝑘 , 𝑦𝑖𝑘 }

𝐾
𝑘=1, 𝑖 = 1, ..., 𝑁

training epoch 𝑇 , step size factors 𝛼, 𝛽
1: Randomly initialize parameter 𝜙𝑚
2: for 𝑖 = 1 to 𝑇 do

3: Sample batch of subsets 𝐷𝑖

4: for all 𝐷𝑖 do

5: Evaluate ∇𝜙𝑚L𝑡𝑟 (𝜙𝑚) with respect to support samples

6: Compute the inner parameters through:

𝜙 ′
𝑚 = 𝜙𝑚 − 𝛼∇𝜙𝑚L𝑡𝑟 (𝜙𝑚)

7: end for

8: Compute the outer parameters on query samples through:

𝜙𝑚 ← 𝜙𝑚 − 𝛽∇𝜙𝑚

∑
𝐷𝑖

L𝑡𝑟 (𝜙
′
𝑚)

9: end for

10: return 𝜙𝑚

the distribution characteristics of the proxy subset D𝑖 . Intuitively,

machine learning models with the same hyperparameter 𝜃 trained

on subsets with similar meta features should have similar model

performances. We explore the distributions of various datasets by

extracting the meta feature of each proxy subset through a designed

neural network as the contextual information of the training of

hp-learner. Specifically, we first extract the raw features of sam-

ples from the trained neural network 𝜙𝑒 and apply kernel embed-
ding [23] to obtain the meta feature of each subset. We denote 𝑋 as

the input instance with distribution 𝑃 (𝑋 ) and variable𝑌 as the label

with distribution 𝑃 (𝑌 ). Given the proxy subset 𝐷𝑖 = {𝑥1, ..., 𝑥𝑚}

of size𝑚, where these samples are supposed i.i.d with distribution

𝑃 (𝑋 ). Then the marginal distribution of𝑋 is calculated as the mean

embedding of samples:

𝜇𝑋 = E[𝜙𝑒 (𝑋 )] ≈
1

𝑚

𝑚∑
𝑖=1

𝜙𝑒 (𝑥𝑖 ), (6)

where 𝜙𝑒 is the trained neural networks to extract features from
input data. In addition to themarginal distribution of𝑋 , we consider
the conditional distribution 𝑃 (𝑌 |𝑋 ) as a part of the meta feature.

The kernel embedding of conditional distribution 𝑃 (𝑌 |𝑋 ) is defined

as:

𝜇𝑌 |𝑥 = E𝑌 |𝑥 [𝜓𝑦 (𝑌 )] =
∫
𝑦
𝜓𝑦 (𝑦)𝑑𝑃 (𝑦 |𝑥), (7)

where 𝜓𝑦 is the embedding function of variable 𝑌 . Based on the
relation between conditional expectation and covariance operators,

the study in [24] shows that 𝜇𝑌 |𝑥 can be written as:

𝜇𝑌 |𝑥 = Ψ𝑦 (Φ𝑥Φ
𝑇
𝑥 + 𝜆𝐼 )−1Φ𝑥 , (8)

where Φ𝑥 and Ψ𝑦 are embedding matrices of variable 𝑋 and 𝑌 ,
respectively. 𝜆 is the additional regularization parameter to avoid
over-fitting. The final meta feature of subset D𝑖 is the combination

of 𝜇𝑋 and 𝜇𝑌 |𝑥 . We concatenate them as 𝑀𝑖 = [𝜇𝑋 , 𝜇𝑌 |𝑥 ].

Meta transfer module

The transfer of hyperparameters from the previously sampled

subsets to the full dataset or new dataset is conducted by the meta

transfer module, hp-learner. In the hp-learner, we design a mapping
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function 𝜙𝑚 from the meta features and hyperparameter configu-

rations to the corresponding performance as a neural network, as

shown in Figure 3. Denoting the hp-learner as a function 𝜙𝑚 , the
objective of the hp-learner is to fit the function 𝜙𝑚 with several

data points. The data points used in training consist of the input

meta features and hyperparameter configurations and the output

model performance. Specifically, the feature encoder takes as in-

put the proxy subset and encodes the sample features into a latent

space of meta feature 𝑟𝑚 . On the other hand, the hyperparame-

ters encoder projects hyperparameter configurations into a latent

space of 𝑟𝑐 . The feature encoder and hyperparameters encoder are
both designed as two-layer perceptrons. Then the meta feature 𝑟𝑚
and hyperparameters feature 𝑟𝑐 are concatenated for subsequent
performance prediction. The concatenated feature is fed to a train-

able predictor to predict the performance score 𝑦. The predictor
is deployed using a three-layer perceptron, and the output of the

predictor is the model performance score, such as test accuracy,

AUC score and so on. The ground truth of performance score 𝑦 is

obtained from the previous hyperparameter optimization on proxy

subsets. The objective function of the training of hp-learner is de-

fined as mean-square-error (MSE) between the ground truth 𝑦 and

the predicted performance value 𝑦. The loss function is formulated
as:

L𝑡𝑟 (𝜙𝑚) = | |𝑦 − 𝑦 | |22 = | |𝜙𝑚 (𝑀,𝜃 ) − 𝑦 | |22 . (9)

The meta features and well-performed hyperparameter config-

urations for previously sampled proxy subsets are considered as

training samples for the hp-learner. Through training the hp-learner

with the supervision of ground truth 𝑦, we construct implicit rela-
tion between data distribution and the selection of hyperparameters.

A trained hp-learner has the ability to predict the performance score

𝑦 given meta feature of a dataset and a group of hyperparameters.

Since the number of the training samples is small, each including a

pair of meta feature, hyperparameter configuration and its corre-

sponding performance score, the neural network tends to over-fit

on the training samples. To alleviate the over-fitting problem, we

introduce a gradient-based meta-learning method to the training

of the hp-learner, motivated by model-agnostic meta-learning al-

gorithm [8]. In the training phase, different subsets are considered

as different tasks, and each training sample consists of the meta

feature, hyperparameter configuration and its corresponding per-

formance score, in the form of {𝑀,𝜃,𝑦}. The training samples are
randomly divided into support set and query set. The samples in

the support set are used in the inner loop gradient descent, and the

query samples are used for updating the model in the outer loop.

The training process of the hp-learner is described in Algorithm 1.

Hyperparameter Prediction

After the training of the well-designed hp-learner, we can ob-

tain the predicted performance scores with given meta features

of various datasets and hyperparameter configurations. We take

the hp-learner 𝜙𝑚 as a black-box function and use L-BFGS [18],

a standard quasi-Newton procedure, to find the optimal hyperpa-

rameter configuration 𝜃 for a specific dataset. For the full dataset,

we compute the meta features as the average of meta features ex-

tracted from all proxy subsets. Furthermore, the hp-learner is able

to provide adaptive hyperparameter selections in an out-of-sample

manner. For the newly arrived dataset, we randomly select a group

of hyperparameters for initial training and obtain the meta feature

of the new dataset. The experimental results in the next section ver-

ify the effectiveness of our Meta-HPO in selecting hyperparameters

on the given dataset with the meta transfer module. Overall, our

meta-learning-based hyperparameter transfer method is capable

of capturing the general relationships between datasets and hy-

perparameter selections with fewer samples and providing better

transfer capabilities on the new dataset.

4 EXPERIMENTS

We conduct various experiments to evaluate the proposed Meta-

HPO algorithm in hyperparameter optimization with several bench-

mark datasets. Furthermore, we visualize the experimental results

for better understanding the optimization procedures of Meta-HPO

and compared baselines.

4.1 Experimental Settings

Datasets

We choose four datasets, including both public and industrial

datasets, to evaluate our Meta-HPO in the experiments: Cifar10

and Cifar100 [17] for image classification; DataCVR and Movielens-

10M [10] in the recommendation system. For each of the public

datasets, we use the original division of training set and test set,

where the former is used for hyperparameter optimization, and the

latter is used for performance testing. In Cifar10 and Cifar100, the

training set consists of 50, 000 images of the size 28 × 28 in 10 or

100 classes, and the test set includes 10, 000 images. Movielens-10M
consists of 10 million ratings and 100, 000 tag applications applied
to 10, 000 movies by 72, 000 users. For the industrial dataset, Dat-
aCVR is collected from the advertisement recommendation system,

which is deployed for providing personal advertisements to users.

Here we consider advertisements as items in the recommendation

system. The dataset contains 24 user-side features and 14 item-

side features, and the user conversion rates are used as labels. We

extract 800K historical data of users and items from the database

for the advertising conversion rate prediction task, where 600K

pieces of data are used for training in HPO, 100K for validation

and the remaining 100K for testing the performance of selected

hyperparameter configurations.

Baselines

We compare our Meta-HPO method to several hyperparameter

optimization baselines: random search (RS) [2], entropy search

(ES) [12], Bayesian Optimization (BO) [14] and Fabolas [16]. In the

offline validation, we track the model performance on the test set

over wall clock time, storing the incumbent returned after every

iteration for each method. In the out-of-sample validation scenario,

we evaluate the optimum hyperparameter configuration found by

Meta-HPO on the new arrival data, visualize the testing results,

and use the incumbent configurations as initialization in the four

baselines. For all experiments, we take the average performance of

3 runs and report the final results.

Implementation details

In the experiments on Cifar10 and Cifar100, we adopt a three-

layer CNN with the kernel size 3 × 3 to extract features of input

images. Then we adopt three fully connected layers as classification

layers. The hidden sizes of the classification layers are 2048, 2048,
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Table 1: Offline performance comparisons with baselines on five benchmarks. In the image classification experiments, the

metric is the classification accuracy of the model trained on the full dataset. In the recommendation experiments, AUC score

is used as metric in classification task on DataCVR and Movielens-10M. And MSE is used as metric in the regression task on

Movielens-10M. “w/ RS” denotes the meta transfer model with randomly sampled subsets.

Model
Classification Regression

Cifar10 ↑ Cifar100 ↑ DataCVR ↑ Movielens ↑ Movielens ↓

RS 0.765 0.401 0.795 0.639 1.357

ES 0.754 0.375 0.792 0.642 1.363

BO 0.767 0.410 0.790 0.644 1.372

Fabolas 0.839 0.507 0.802 0.656 1.364

Meta-HPO w/ RS 0.857 0.545 0.815 0.671 1.308

Meta-HPO (Ours) 0.872 0.568 0.827 0.678 1.302

(a) Evaluations on Cifar10 (b) Evaluations on Cifar100 (c) Evaluations on Movielens-10M

Figure 4: Test performance of the optimized hyperparameters over wall-clock time on datasets Cifar10(a), Cifar100(b), and

Movielens-10M(c). At each time, the curves show the test performance of each method’s respective incumbent.

and the number of classes, respectively. There are five hyperparam-

eters to be optimized: the number of kernels of each convolutional

layer, the training batch size and the initial learning rate of the

Adam optimizer. We evaluate Meta-HPO on the two-tower DNN

model [4, 13] for the recommendation system. In the experiments

on Movielens-10M, we optimize a total number of ten hyperparam-

eters, including the embedding size of each attribute, the hidden

size of each fully connected layer and the initial learning rate of

Adam optimizer [15]. As for the DataCVR, we select five sets of

hyperparameters as our optimization goal, including continuous

hyperparameters: the initial learning rate, and discrete hyperparam-

eters: the number of neurons in the fully connected layer. We search

for the optimum hyperparameters on the training set using our

method and other baselines and then test the found configurations

on the test set. At each iteration, the sampling ratio accounts for

10% of the total set; the maximum training epoch is set as 100, and

the minimum training epoch for BOHB [5] is set as 3. The detailed

ranges of hyperparameters are listed in Table 2-3.

4.2 Evaluation on Image Classification

Cifar10 and Cifar100

We conduct experiments on image classification tasks, optimiz-

ing the validation accuracy of three-layer CNNs on Cifar10 and

Cifar100. The optimized hyperparameters are the number of chan-

nels in each layer, the training batch size and the initial learning rate

of Adam optimizer [15]. The experimental results on Cifar10 and

Cifar100 are reported in Table 1. Our Meta-HPO with proxy subsets

sampling strategy performs best with the test accuracy of 87.2% on

Cifar10 and 56.8% on Cifar100. This validates the effectiveness of

the proposed adversarial proxy subsets sampling strategy and meta

transfer of hyperparameters. If we use random sampling instead

of perturbation-aware adversarial sampling, the test accuracy de-

creases to 85.7% and 54.5% on Cifar10 and Cifar100, respectively.

On the one hand, Fabolas performs best in the four baselines since

it samples various subsets for hyperparameter optimization and

optimized the size of the subset at each iteration. On the other hand,

entropy search has the lowest test accuracy, which indicates that

the configuration it finds is not the optimal value.

In addition to the final test accuracy, we compare the searching

efficiency of our Meta-HPO and baselines by taking the best test

accuracy on the full dataset as the metric of model performance

at each iteration. The hyperparameter optimization processes are

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1115



Figure 5: Test performance of allmethods in offline scenario

on DataCVR.

illustrated in Figure 4 (a) and (b). From the test accuracy curves,

we can observe that random search and Bayesian optimization

methods are capable of finding better configurations at the early

stage of searching than other methods. Besides, random search,

Bayesian optimization and entropy search stop earlier than others

at points of the non-optimal solutions with close performances in

searching for optimal hyperparameters. As for HPO methods with

subset sampling strategy, Fabolas performs well on Cifar10 and

Cifar100, achieving 80% test accuracy in the searching procedure.

Compared with Fabolas, our Meta-HPO has a similar upward trend

in the early stage but performs better over time, which indicates

that our model is able to find a better hyperparameter configuration

through constructing the connection among the meta feature of

subset, hyperparameters and the performance. The implicit knowl-

edge learned from the proxy subsets facilitates the selection of

hyperparameters on the full dataset.

4.3 Evaluation on Recommendation System

In the two-tower DNNmodel, we obtain the representations of user

and item with two separate encoders, and the representations are

projected into a shared embedding space through full-connected

layers. The similarity between user and item is calculated as the

dot product of their embeddings. The metric of the hyperparameter

performance is the AUC score in the classification task and the

mean-square-error (MSE) in the regression task.

DataCVR

We evaluate the ability of Meta-HPO in a real-world industrial

scenario, DataCVR. In the experiment, we optimize five hyperpa-

rameters: the number of neurons of four fully-connected layers and

the initial learning rate of the Adam optimizer. The testing AUC

scores of different methods are shown in Table 1. We can conclude

that Fabolas performs best in the baselines with an average AUC

0.802, and the other three baselines have similar performance on
DataCVR. Our Meta-HPO achieves the best performance with an

AUC score of 0.827. The test AUC scores validate the effectiveness of
Meta-HPO in searching for hyperparameters with adversarial proxy

subsets sampling and meta transfer of hyperparameters. Without

the perturbation-aware adversarial sampling strategy, the testing

AUC decreases from 0.827 to 0.815, which indicates the proposed

Figure 6: Test performance of all methods in the out-of-

sample scenario on DataCVR.

sampling strategy improves the HPO performance in the recom-

mendation system compared with random sampling.

Besides, we compare the search efficiency of different methods

since HPO is generally time-consuming on the large-scale dataset.

We record the best testing AUC score over wall-clock time and re-

port the curves in Figure 5. From the searching curves, we conclude

that our Meta-HPO has better performance at the beginning with

the help of perturbation-aware adversarial sampling. The search-

ing curve of Meta-HPO improves steadily and exceeds others after

40, 000 seconds. The Meta-HPO achieves the best results in hy-

perparameter optimization on the DataCVR. We also observe that

random search, entropy search and Bayesian optimization perform

at an average benchmark point at the beginning. Random search

shows a huge variance than other curves at the beginning. On the

contrary, Bayesian optimization keeps relatively stable in the early

stage and then flattens out. Although the entropy search curve is

not as good as the other two curves in the early stage, it shows

steady improvement over time. The curve of Fabolas is significantly

lower in the initial stage because the random sampling strategy

cannot represent the full dataset well. Its performance is the worst

in a short period but surpasses other methods with the increase of

iterations.

Movielens-10M

To evaluate the proposed method on the public recommenda-

tion task, we conduct classification and regression experiments on

Movielens-10M. In the regression experiment, the output of the

two-tower DNN is the predicted rating score. And we use MSE on

the test set as the metric of model performance. In the classification

experiment, we divide the training data into positive and negative

samples according to the rating scores. Samples with a score greater

than 3 are positive, and others are negative ones. We use the AUC

score as the measure of the model performance.

The test results on the full dataset are shown in Table 1. Lower

MSE and higher AUC scores both indicate better performance of the

HPO model. In the classification task, the four baselines perform

similarly, and our Meta-HPO has 0.678 test AUC on Movielens-

10M, which indicates that the Meta-HPO has the ability to find

better hyperparameters for the two-tower DNN recommendation

model. A similar performance also appears in the regression task
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of Movielens-10M. The random search method has the best perfor-

mance in the four baselines with the MSE of 1.357. The regression
MSE on the test set of Meta-HPO is 1.302, outperforming other
baselines. The MSE score increases to 1.308 without adversarial
sampling strategy, indicating that the perturbation-aware adversar-

ial sampling strategy is capable of sampling representative subsets

for hyperparameter searching. In addition, the training curves on

Movielens-10M shown in Figure 4(c) depict the comparisons of

our Meta-HPO and baselines. The test accuracy on the full large

dataset increases over time. With the searching iteration increasing,

the best-performed hyperparameter configurations found by these

methods perform similarly. When the training time reaches 150, 000
seconds, our Meta-HPO has a better performance compared with

baselines. The experimental results on Movielens-10M demonstrate

the effectiveness of our Meta-HPO in hyperparameter optimiza-

tion with adversarial proxy subsets sampling and meta transfer

mechanism.

4.4 Evaluation in Out-of-sample Scenario

In industrial scenarios, new data arrives continually in streaming.

The newly arrived dataset usually has concept drift of distribution.

The compared baselines here cannot adapt to the concept drift of

new data efficiently. However, our Meta-HPO is capable of pre-

dicting well-performed configurations by the hp-learner naturally.

After training the hp-learner, we take the meta feature of new data

as conditional input and find the optimal configurations for the new

dataset. In this way, our Meta-HPO can be applied to out-of-sample

industrial scenarios, such as advertisement recommendations.

To evaluate the performance of Meta-HPO in the out-of-sample

scenario, we use DataCVR as the benchmark here. We divide Dat-

aCVR into different batches of training samples from the oldest

to the latest in sequence. For the 𝑖-th batch, we use this batch of
samples to train and update the model and then use the (𝑖 + 1)-th
batch for evaluation. In this way, the data distribution changes

along with batches, which simulates the industrial application sce-

nario. Since the industrial machine learning models often require

real-time performance, we limit the running time of the optimiza-

tion to 30, 000 seconds. From the performance curves in Figure 6,

we can observe that random search, entropy search and Bayesian

optimization show similar performance in a relatively short period.

Due to the distribution shift in the streaming data, they may en-

counter the cold-start problem on new datasets. Thus they perform

worse than Meta-HPO when the searching time increases. Fabolas

achieves poor performance in the out-of-sample scenario with new

data. Randomly sampling subsets in the early stage encourages the

model to find well-performed hyperparameters quickly. But when

faced with newly-arriving data, Fabolas adapts to the changes of

data slowly. When the running time reaches 25, 000 seconds, an ap-
parent increasing trend begins in the curve of Fabolas, which is too

slow to deploy in the out-of-sample scenario with real-time require-

ments. On the other hand, with the help of the adversarial sampling

strategy and meta transfer module, our Meta-HPO achieves the

best performance in a short period. This indicates that Meta-HPO

improves the generalization performance of the hyperparameters

optimization model in a short time in out-of-sample forecasting,

which is quite useful in industrial scenarios.

Table 2: Optimized hyperparameters on Cifar10 and Ci-

far100.

Hyperparameter Range

number of kernels in first convolutional layer [64, 32]

number of kernels in second convolutional layer [128, 64]

number of kernels in third convolutional layer [256, 128]

batch size [512, 128]

learning rate [1e-6, 1e-1]

Table 3: Optimized hyperparameters on Movielens-10M.

Hyperparameter Range

embedding size of user id [64, 20]

embedding size of user gender [64, 20]

embedding size of user age [64, 20]

embedding size of user job [64, 20]

embedding size of movie id [64, 20]

embedding size of movie type [64, 20]

number of neurons in first fully connected layer [128, 64]

number of neurons in second fully connected layer [64, 32]

number of neurons in third fully connected layer [32, 16]

learning rate [1e-5, 1e-2]

5 CONCLUSIONS

This paper proposes a novel method Meta-HPO to optimize hyper-

parameters in the large-scale dataset and further newly-arriving

data. We design a superior perturbation-aware adversarial sampling

strategy, instead of traditional random sampling, to sample repre-

sentative subsets more comprehensively and effectively. Besides,

We design a meta transfer framework for hyperparameter fore-

casting through mining the connection between meta features and

hyperparameter configurations. Compared with state-of-the-art

HPO methods, our method has the ability to transfer the previously

learned knowledge of hyperparameters to the full dataset or new

data. In future work, the two-stage optimization with hyperpa-

rameter optimization on the proxy subsets and meta transfer of

hyperparameters can be further improved with end-to-end opti-

mization.
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